54,188 research outputs found

    Blunting the Spike: the CV Minimum Period

    Full text link
    The standard picture of CV secular evolution predicts a spike in the CV distribution near the observed short-period cutoff P_0 ~ 78 min, which is not observed. We show that an intrinsic spread in minimum (`bounce') periods P_b resulting from a genuine difference in some parameter controlling the evolution can remove the spike without smearing the sharpness of the cutoff. The most probable second parameter is different admixtures of magnetic stellar wind braking (at up to 5 times the GR rate) in a small tail of systems, perhaps implying that the donor magnetic field strength at formation is a second parameter specifying CV evolution. We suggest that magnetic braking resumes below the gap with a wide range, being well below the GR rate in most CVs, but significantly above it in a small tail.Comment: 5 pages, 4 figures; accepted for publication in MNRA

    Talon cusp affecting primary dentition in two siblings: a case report

    Get PDF
    The term talon cusp refers to a rare developmental dental anomaly characterized by a cusp-like structure projecting from the cingulum area or cement-enamel junction. This condition can occur in the maxillary and mandibular arches of the primary and permanent dentitions. The purpose of this paper is to report on the presence of talon cusps in the primary dentition of two southern Chinese siblings. The 4 years and 2 months old girl had a talon cusp on her maxillary right primary central incisor, while her 2 years and 9 months old brother had bilateral talon cusps on the maxillary primary central incisors. The presence of this rare dental anomaly in two siblings has scarcely been reported in the literature and this may provide further evidence of a hereditary etiology.Article Link: http://www.rjme.ro/RJME/resources/files/540113211213.pd

    Discovery Prospects for NMSSM Higgs Bosons at the High-Energy Large Hadron Collider

    Get PDF
    We investigate the discovery prospects for NMSSM Higgs bosons during the 13~TeV run of the LHC. While one of the neutral Higgs bosons is demanded to have a mass around 125~GeV and Standard Model (SM)-like properties, there can be substantially lighter, nearby or heavier Higgs bosons, that have not been excluded yet by LEP, Tevatron or the 8~TeV run of the LHC. The challenge consists in discovering the whole NMSSM Higgs mass spectrum. We present the rates for production and subsequent decay of the neutral NMSSM Higgs bosons in the most promising final states and discuss their possible discovery. The prospects for pinning down the Higgs sector of the Natural NMSSM will be analysed taking into account alternative search channels. We give a series of benchmark scenarios compatible with the experimental constraints, that feature Higgs-to-Higgs decays and entail (exotic) signatures with multi-fermion and/or multi-photon final states. These decay chains furthermore give access to the trilinear Higgs self-couplings. We briefly discuss the possibility of exploiting coupling sum rules in case not all the NMSSM Higgs bosons are discovered

    High Redshift Standard Candles: Predicted Cosmological Constraints

    Get PDF
    We investigate whether future measurements of high redshift standard candles (HzSCs) will be a powerful probe of dark energy, when compared to other types of planned dark energy measurements. Active galactic nuclei and gamma ray bursts have both been proposed as potential HzSC candidates. Due to their high luminosity, they can be used to probe unexplored regions in the expansion history of the universe. Information from these regions can help constrain the properties of dark energy, and in particular, whether it varies over time. We consider both linear and piecewise parameterizations of the dark energy equation of state, w(z)w(z), and assess the optimal redshift distribution a high-redshift standard-candle survey could take to constrain these models. The more general the form of the dark energy equation of state w(z)w(z) being tested, the more useful high-redshift standard candles become. For a linear parameterization of w(z)w(z), HzSCs give only small improvements over planned supernova and baryon acoustic oscillation measurements; a wide redshift range with many low redshift points is optimal to constrain this linear model. However to constrain a general, and thus potentially more informative, form of w(z)w(z), having many HzSCs can significantly improve limits on the nature of dark energy.Comment: Accepted MNRAS, 27 Pages, 15 figures, matches published versio

    Axion-like-particle decay in strong electromagnetic backgrounds

    Get PDF
    The decay of a massive pseudoscalar, scalar and U(1) boson into an electron-positron pair in the presence of strong electromagnetic backgrounds is calculated. Of particular interest is the constant-crossed-field limit, relevant for experiments that aim to measure high-energy axion-like-particle conversion into electron-positron pairs in a magnetic field. The total probability depends on the quantum nonlinearity parameter - a product of field and lightfront momentum invariants. Depending on the seed particle mass, different decay regimes are identified. In the below-threshold case, we find the probability depends on a non-perturbative tunnelling exponent depending on the quantum parameter and the particle mass. In the above-threshold case, we find that when the quantum parameter is varied linearly, the probability oscillates nonlinearly around the spontaneous decay probability. A strong-field limit is identified in which the threshold is found to disappear. In modelling the fall-off of a quasi-constant-crossed magnetic field, we calculate probabilities beyond the constant limit and investigate when the decay probability can be regarded as locally constant.Comment: 22 pages, 7 figure

    Proof of Luck: an Efficient Blockchain Consensus Protocol

    Full text link
    In the paper, we present designs for multiple blockchain consensus primitives and a novel blockchain system, all based on the use of trusted execution environments (TEEs), such as Intel SGX-enabled CPUs. First, we show how using TEEs for existing proof of work schemes can make mining equitably distributed by preventing the use of ASICs. Next, we extend the design with proof of time and proof of ownership consensus primitives to make mining energy- and time-efficient. Further improving on these designs, we present a blockchain using a proof of luck consensus protocol. Our proof of luck blockchain uses a TEE platform's random number generation to choose a consensus leader, which offers low-latency transaction validation, deterministic confirmation time, negligible energy consumption, and equitably distributed mining. Lastly, we discuss a potential protection against up to a constant number of compromised TEEs.Comment: SysTEX '16, December 12-16, 2016, Trento, Ital

    The Drosophila Period Gene And Dye Coupling In Larval Salivary Glands: A Re-evaluation

    Get PDF
    • …
    corecore